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THREE-DIMENSIONAL GUIDANCE EQUATIONS
FOR QUASI-OPTIMUM SPACE MANEUVERS

By Donald J. Jezewski
. P4
INTRODUCTION 2 Gs'/ {

An analytical technique has been derived by operating on a set of
linearized two-body equations (ref. 1) with the classical calculus of
variations to determine a guidance law. A three dimensional case, in
which aerodynamic forces are neglected, is treated. The solution dif-
fers from that derived in reference 2 in that a continuous constant
thrust rather than a constant acceleration is assumed. The equations
are first reduced to a flat-body set in two dimensions to determine what

may obe made and still obtain a valid solution for a class
of launch and landing trajectories. By integration, three simultaneous
transcendental equations in three unknowns can be derived from this set
of equations. The downrange coordinate was assumed to be free at the
terminal time. Trajectories resulting from this set are compared with
optimum trajectories to determine what errors are present and which
terms, deleted by the flat-body approximation, are the principal con-
tributors to the error. Suitable approximate expressions are intro-
duced to the flat-body set of equations to simulate the deleted terms
in an attempt to reduce these errors. The equations are again inte<
grated, and the results are compared with the optimum for a number of
trajectories. - The technique is extended to the three dimensional case,
and five independent constants are generated to satisfy the five con-
straint equations. Guided solutions for launches and landings are il-
lustrated by using the analytic solution as a feedback to the exact
integrated mode. Variations in the times of correction are investigated
to determine the err i a i . {

rmi e or incurred as a function of step size CZ/eri}\.

apprcx~'mn-t10ns ety o A ned 4217

‘'The author wishes to acknowledge the assistance of Mr. James Raney
and Mr. Ray Roten of the Computation and Analysis Division, NASA Manned
Spacecraft Center, who obtained the time-optimum trajectory data for
purposes of comparison.
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SYMBOLS

initial thrust acceleration, T/mo, ft/sec2

azimith angle of velocity, measured positive from
north, deg

coefficients of time series

components of acceleration defined by equations (59),
(60), and (61), ft/sec?

constant of integration defined by equatién (24)
coefficients of time series

constant of integration defined by equation (56)
initial values of Lagrange miltipliers, radians/sec
constant of integration defined by equation (57)
transcendental functions

- 2
gravitational acceleration, ft/sec

coefficients of time series
specific impulse, sec

inclination of orbital plane with respect to inertial
reference frame, deg

constant defined by equations (28) and (29)
function defined by equation (26)
function defined by equation (58)

function defined by equation (25)



X,Y,2

X,¥Y,2

%y 9 %o @5: %

Ja\')
c

mass of vehicle, slugs
function defined by equation (37)
radius to vehicle from center of body, ft

radius of the reference body, ft

thrust, 1b
time, sec

components of total veloecity in x, y, and z directions,
respectively, ft/sec

total ve].ocitj, ft/sec

characteristic velocity, ft/sec

weight of vehicle, 1b

inertial reference frame, ft
rotating coordinates of vehicle, ft
tangent of X

functions defined by equations (22), (21), (45), and
(46), respectively

flight-path angle, deg

change in characteristic velocity, ft/sec
change in inclinstion angle, deg
latitude angle of vehicle, deg

normelized mess ratio, m/m0

longitude angle of vehicle, deg

thrust pitch angle, measured from local horizontal
plane, deg

thrust yaw angle, measured positive from east, deg



Subscripts:

o,1 initial and final values of state and control variables
A A analytic quantity

I integrated quantity

n nth order term of time series

Operators:

(M) time differentation

gd( ) Gudermannian

FORMULATION OF THE PROBLEM

The mathematical model employed in this investigation is a mass
particle with three degrees of freedom referred to a set of rotating
coordinates in which the y-axis is alined along the local vertical, and
the plane formed by the x- and z-axes is the local horizon. The axis
system and the associated notation are illustrated in figure 1. This
axis system was chosen because it is desired to allow the downrange

distance (longitude) at the final time X = x(tl) to be free or un-

specified. In the rotating axis system, the velocity vector is located
by the two familiar angles, T and AZ; and the thrust vector, in a

similar sense, is located by the two control angles, X (pitch angle)
and V. The angles which locate the position-vector in the inertial
reference frame are § and @.

The equations of motion for this model are

X =u (1)
y=v (2)
2 = v ‘ (3)
A
u=-ulv-wtang)/r+ 7? cos X cos ¥ (%)
A
v = (u2 + wa)/r -g+ T? sin X (5)



A
w=- (vw+ w tan 8)/r +-ﬁ; cos X sin ¥ (6)
where
A, = T/m, (7)
wo=1+ 4t '(0ststl) (8)
b = m/mg (m<0) (9)
g = go< Olr) (10)
r=d @ ev? 428 (11)

The gquantities

u, v, and v are the velocity components along the

X-, y-, and z-axis, respectively.

The vehicle is assumed to have a constant thrust T and a mass
flow rate |1 which has been normalized. The initial thrust-to-mass
ratio of the vehicle is

AO.

The final time tl was selected to be

minimized since, under the above assumptions, it yields & minimum fuel
consumption.

Equations (1) to (11) are, of course, nonlinear, and any attempt
to operate on them with the calculus of variations would yield an ad-
Jjoint set which are also nonlinear.

The problem in the plane is solved first by using the following
equations of motion

X

y

1

]

u | (12)

v (13)
AO

. cos X - uv/r (14)
A

1? sin X - g + u2/r (15)
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Further, if the radius of the attracting body is allowed to approach
infinity, the coupling effects in these equations vanish and the gravita-
tional acceleration approaches the surface value go.

The following pitch-angle relationship from reference 2 is obtained
when the calculus of variations is applied to this reduced set of equa~
tions when the final range is allowed to be free:

C, - C.t
tanx:..LL_C_E_ (16)
3

where the values of C are constants to be determined.

To determine a unique solution, the constants C must be found as
functions of the desired boundary conditions. This result is accom-
plished by integrating the constraint equations between the bounds speci-
fied at t =0 and t =t . The constants ch/c3 and 02/03 are
obtained by evaluating the pitch-angle relationship at the boundaries
and yield

c
6&-= tan XO W
3
(17)
Eg ) tan XO - tan Xl >
Cy T
J
where X, =X(0) and X, = x(t,).

Integration of the flat-body equations results in the following
three simultaneous transcendental equations in the three unknowns X

Xl, and tl.

O}

ity

a
. 2
vy - Hyg - gotl<l + =5 ) -3 (AO sec X, - BO) =0 (18)

g .t Au K
01 o'y [
17 Yot Pot T T E gd(x,) - gdlx)

.

Koy
+ K& N « ——=— - = 0
2" " A, (u, “o)] (19)



Kk1/2.
_—&Ao“*a (u1 - uo) - log M =0 (20)
where : dtl
°‘2=tanx1-tanxo (22)
@ = 1 - a, tan XO (22)
gd(x) = loge(tan X + K sec X) (23)
B, = - % (vg - fiyg) + A, sec X, (2k4)
k- ooy - a.aK,,/E sec X
M== - o K ,/k sec X (25)
-% % 0
k = ala + a22 ) (26)
N = sec X, - sec Xl/p,l (27)
K=1 (- nf2 < X < =/2) (28)
K=-1 (n/2<X< 3xn/2) (29)

Because the control quantities occur implicitly in this set of equations,
it is impossible to solve for them directly. Since the equations are
transcendental, a first-order perturbation technique (ref. 3) is used to
force the solution to converge. This technique, which generates a par-
tial matrix, assumes that a solution exists if the matrix of partials
has an inverse.

A solution of this system of equations as compared with that of an
optimum integrated round body is indicated in figure 2. The curve shows
the variation of characteristic velocity error with initial thrust-to-
weight ratio for a launch to lunar orbit.



It should be noted that the error generally decreases with increas-
ing T/Wo. This follows logically since burning time t, « (T/Wo)-l and
as the burning time approaches zero, the surface integrated over ap-
proaches a flat body. The solution does not approach zero for increasing
values of thrust-to-weight ratic since it is an initial boundary-value
solution and not a guided trajéctory 10 the terminal conditions.

The question of what can be done to improve this solution without
destroying the analytic properties of the problem is now posed. Cer-

tainly, the errors are the result of neglecting the cross—coupllng
effects and setting g equal to a constant.

Figures 3(a) and 3(b) illustrate time histories of the nonlinear
terms

a, = uv/r (30)
a =- g+ u2/r (31)

for a minimum-time optimum launch to lunar orbit as compared with those
of the flat-body approximations. The displacement between the curves

- in figures 3(a) and 3(b) represents the horizontal and normal accelera-
tion errors of the flat-body approximation and amounts to a maximum of

5.5 ft/sec2 for the normal component at the terminal point. The hori-
zontal acceleration term au for optimum time descents or ascents from

orbit can be considered to have only a second-order effect. For the
case illustrated, a launch to lunar orbit, the maximum value of this

term amounts to less tham 0.2 ft/seca. Therefore, the quantity a,

accounts for the largest portion of the observed error.

To offset the errors, functions are defined in the form

l

% = }: hn+1 & (32)
n=0
1

& < Z ®n+l ¢ (33)

n=0



which have the same values as the functions defined in equations (30)

and (31) at the two bounds. The introduction of a power series in one
of the dependent variables would necessarily complicate (if not com-
pletely destroy) the guidance law stated in equation (16). A time series
is acceptable because it will not alter the guidance law but will only
change the transversality condition of the calculus of variations.

By replacing the nonlinear terms in the two-dimensional model with
these time series, the system of equations is integrated by using the
control law derived for the flat body. The resulting three simultaneous
transcendental equations are solved by the method outlined for the flat-
body case. This solution has the added complication of determining the
constants of the power series approximation.

The number of coefficients required to simulate sufficiently the
nonlinear trajectories is determined by qualitatively examining the time
histories of the deleted nonlinear terms. Since an inversion of a
matrix of the order of the number of coefficients minus one is involved,
it is desirable to retain a minimum number of terms. For the ascent and
‘descent trajectories which were examined, polynomials of the third de-
gree were found to be sufficient. The evaluation of the power-series
coefficients was determined by using the information on the present and
past history of the state and control varisbles. Initially, the coef-
ficients are either set equal to zero (other than the first term) or
approximated by a backward integration process.

A comparison of this solution with the flat~body approximation and
the strict optimum is indicated in figures 3(a) and 3(b). The dashed
curve is the power series approximation using a truncated series with
four coefficients. The error in the normal acceleration term has been
reduced to a negligible amount, and the horizontal term strongly resem-
bles the strict optimum. The time history of the control programs and
the terminal values of the state variables for this launch to lunar
orbit are presented in figure 4 and table I. In these solutions, the
nonlinear equations were integrated at a step interval of 2.5 seconds,
and the analytic solution was used as a feedback control. Errors exist
in the state variables at the terminal time as a result of the correc-
tion interval and the singular nature of the guidance equations as time
to go approaches zero. An open-loop system was required for the last
portion of the trajectory. A time-history comparison of the state vari-
ables of the analytic and optimum integrated solutions would not be of
interest since the two sets of curves are nearly coincident.

If the simplifying assumptions of this two-dimensional model are
extended to that of the problem originally stated, the equations of
motion are reduced to the following form.:
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x=u (34)
y" =V (35)
zZ =w (36)
1 AO
u = Z hn+ltn + m cos X cos ¥ (37)
n=0
1 o Ao
v = Z 8 2t + m sin X (38)
n=

n 0
n+1t + m cos X sin ¥ (39)

R
W
il
o

>

The constants a, b, and h are determined by the method previously
outlined.

By applying the calculus of variation to this system of equations,
minimizing the final time, and once again allowing the final value of
x, or the longitude, to be free, the following control-angle relation-
ships result:

C. - C.t)cos ¥
C
L
C, - C,t
tan y = 03 (41)
C, ‘

The solution is now complete since five independent constants
exist to satisfy the five constraint equations. Equation (34) is not
integrated since its final value is to be unspecified. The presence of
the coupling term cos ¥ in the X control law increases the diffi-
culty of integrating the linearized equation. Elimination of cos ¥
reduces the interrelationship of the control varisbles as indicated in
the following equations:



Ir

then,

where:

If ¢ 1is assumed to be small so that
it can be observed that although V¥
the inverse relationship has been eliminated.

5/C2

term 0.6 where C

C. - C.t
tan X = 50 2 =8
L
sinv=a.5+a.6s
) (Czcs - 9;05)
%5 .y
Cc
o = =2
6 C,
C
(—:2=tanxo
in
-(ig_=‘ba.nxo-tanxl
Cl; tl
C
6
—~ = gin ¥
Ch 0}

t

82_1 sin \vo - sin vl
Cy 1

is the ratio of the control-angle rates.

(45)

(46)

(47)

(48)

(49)

(50)

cos Y=~ 1 and tan ¥ =~ sin ¥,

is functionally dependent on X,

This can be noted in the
It is

shown subsequently how a weaker coupling relationship still exists in

the constants of the power series expansion.
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The small angle approximation of ¥ may at first appear to be an
unusually severe restriction until the type of problem to be solved is
considered. ILunar landings and launches are to occur at latitudes be-
tween #1(Pand azimuth angles of near £90° . Since large plane changes
are not expected, the assumptions and equations stated here are quite
valid. '

When equations (35) to (39) have been integrated from time t =0
to t = tl, and a considerable amount of manipulation has been performed,
the following five transcendental equations in the five unknowns XO’

)L_L, \lro, V/l, and tl are derived. The method of solution of these
equations is as outlined for the two-dimensional flat-body problem.

/KL
Fl 1ogem °'2Ao o] (51)
2 " n+l
Fp = ay(Ag sec Xy = Cp) = i (myvy - dyy - "B:';}Tl'f‘[l
n=0
it (n + 1)]
+ n+2 =0 (52)
! a _t n+2
Fy = i (ljy = ¥p + (nnill:;.(n T 2)| “%C"%) * Ad‘l[gd(xl)
n=
Go L
- gd(Xo) + 0.2N - K(;a—a'] =0 (53)

F, =a, {Ao[a5 gd(Xl) +ag gd(Xo)] - D(} +4 }lzl - By

l L[]
: :b ¢ BF ft. (o +1)
+ o+l 1 1+ —=& =0 (54)

n+1 n+2
n=0




n+2
bntl

Fg = QmZo= 2 * ) @ D@+ |~ %Pot1) * Aghy|%%Y

n=0

1

where
ady, - v.)
= 0 0
0 —— + AO sec XO
2
Bz, = w,)
- 0 0 [ :l
DO —-——--——---(JL2 + Ay % gd(Xo) + ag sec X,
1 n+l
L - - u - -Iil—l:*it—]-;———
ul 0 n+1l
n=0

As was previously mentioned, if a small angle approximation is

13

-<ai(]2-m>gd(X)+( -d.)”gd(x)-l-—@—(a. - cc)1=0
a2 - )80 + (e - o) galxy) + Fiam, aleJ

(55)

(56)

(57)

(58)

made on V, the equations of motion appear to be uncoupled at least in
one direction. However, for guided trajectories, a weaker coupling re-

lationship exists in the constants of the power-series expansions:

1
n
au--u(v—wtan 0)/r = z h ot
n=0
1
2 2 n
a =-g+(u +v)/r= Z a qt
n=0
1
- 2 N n
a == (vw+u tang)/r = Z b .t

n=0

(59)

(60)

(61)
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Each time the trajectory is corrected, the power-series constants
are corrected on the basis of the present and past state as indicated
in equations (59), (60), and (61). The accelerations in the x and
y directions are not independent of the acceleration in the 2z direc-
tion but-are coupled through the constants & and hn of the power

sevﬁ' og.

245 g~

RESULTS

The degree of success achieved by using equations (51) to (58) to
similate the strict optimum can be best shown, under the assumption of
no boundary-value errors, by performance data in terms of characteristic
velocity. This quantity, for a constant mass-flow rate, is a measure
of the amount of fuel consumed. For the two-dimensional case already
considered, the launch to lumar orbit, the performance loss is approxi-
mately 2 ft/sec with respect to the strict optimum. With this small
performance loss, it can be assumed that the state and control variables
closely resemble those of the integrated solution. The control angle
X had the most noticeable deviation; the maximum variation was at the
initial time and amounted to 1% Throughout the trajectory, abnormal
control angular rates were not encountered; and as time to go approached
zero, they were avoided by using an open-loop system.

The trajectories presented in this paper are compared on the basis
of performance in terms of characteristic velocity. The strict optimum
and analytic control angles are also compared. A table of errors is
given for each solution in which the terminal miss errors are indicated
as functions of the correction intervals.

Figure 5 is a time-history camparison of the control angles X
and ¢ for a descent fram a circular lunar orbit with longitude free
to a flare maneuver at an altitude of 5,000 feet. The solid curves
represent the strict optimum, obtained through integration, and the
dashed curves are the analytic approximations. The tendency of the
control angle X +to be linearized versions of the optimum is a char-
acteristic of the solution for launches to and from lunar orbits. The
agreement in the yaw angle ¥ 1is also very good until the strict
optimim has a rapid change in slope at which time the analytic solution
only hints at following. The small angle approximation made on V¥ in
the analysis is verified in this figure. A plane change of 2.8017°
was required to satisfy the terminal state vector. Table II lists the
state variable errors and performance loss at the terminal time, as
compared with the strict optimum for the correction intervals of 2.5,
5.0, and 10.0 seconds. A correction interval is given as the time
between corrections of the constants C defined in the analysis. A
performance loss of less than 1 ft/sec was obtained for the boundary
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conditions listed for the 2.5~-second correction interval. This tra-
jectory had an initial thrust-to-weight ratio of 0.4172 and a specific
impulse of 314 seconds. The initial and final conditions on the state
variables are also listed in the table. The solutions agree very well
with the optimum with the largest errors occurring in velocity and
azimith. The apparent large error in 7y at the terminal time is the
result of a rapid change in this guantity in the last few seconds of
the trajectory. Although they are not presented in this paper, results
for a flare maneuver in two dimensions with rl = - 11° compared very

well with only a 0.05° error for a correction interval of 10 sec-
onds. Velocity and azimuth angles have apparent minimum errors at the
5-second correction interval whereas the errors in the remaining var-
iables decrease with the decreasing interval.

Figure 6 is the time-history comparison of the control angles X
and V¥ for an ascent from the lunar surface to the pericynthion of an
orbit which has an eccentricity of 0.0429. The longitude is once again
held free. The agreement in pitch angle X is exceptionally good with

-]

the maximum deviation being approximately %-. This good agreement would

be expected a priori since, as mentioned previously in the analysis, a
high thrust-to-weight ratio indicates that there is a short burning
time and that the surface integrated over approaches a flat body. Un-
der these conditions, the control law derived for the analytic solution
more nearly approximates the true optimm. The yaw angle solutions at
first appear to be complete opposites until consideration is made of
the performed trajectory maneuver. Yaw angle is measured in the same
sense as azimuth, and for a launch in which the flight path angle ap-
proaches 90°, the azimuth angle is nearly undefined. Therefore, the
yaw control angle is poorly defined initially. In order to meet the
terminal boundary conditions, the yaw angle of the analytic solution
must decrease since initially it had a greater positive value than the
strict optimum.

Table III lists the state variable errors and performance loss at
the terminal time for the correction intervals of 2.5, 5.0, and
10.0 seconds. The initial and final values of the state variables are
also listed in the table. The initial thrust-to-weight ratio was
1.0115, and the specific impulse was 310 seconds. A plane change of
1.3262° was required to meet the terminal conditions. Contrary to the
descent trajectory, velocity and azimuth have maximum errors at the
5-second correction interval rather than minimums. The errors in the
remaining variables decrease with a decreasing correction interval.

Table IV lists the error data for an optimum insertion into a
circular earth orbit. A small plane change of 1.367° was required to
satisfy the terminal state vector. An initial thrust-to-weight ratio
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of 0.86 and a specific impulse of 426 seconds were used. The initial

and final conditions on the state variables are also listed in the table.
A performance loss of 239 ft/sec, or 1.28 percent with respect to the
strict optimum, was obtained for a correction interval of 2.5 seconds.

The errors can be seen to be quite small for a trajectory of this type.
They follow the same trend as those for the lunar descent maneuver with
velocity having an apparent minimum at a correction interval of 5.0 sec-
onds and the errors in the remaining variable decreasing with a decreasing
interval. '

CONCLUDING REMARKS

Quasi-optimum guidance equations in three dimensions for which
constant thrust was used have been analytically derived by the calculus
of variations. The basis of the analysis is the analytical solution to
the flat-body problem which is extended to simlate a round body by the
addition of power series in time. Numerical solutions to the resulting
transcendental equations have been generated by using an iterative con-
vergence technique.

Guided trajectories were examined for a landing on and launch from
the lunar surface and for an insertion into earth orbit. The resulting
curves for the control angles agree closely with the true optimum and
produce solutions which are more linear than the exact curves. Terminal
state errors and performance data are presented for the correction
intervals of 2.5, 5.0, and 10.0 seconds. The errors in the state vari-
ables generally decrease with a decreasing correction interval. For the
lunar trajectories, the azimuth angle was difficult to control and had
terminal errors of approximately 1 percent; whereas, for the earth-
orbital insertion trajectory, the azimuth angle error was two magnitudes
smaller.
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TABLE I.- COMPARISON OF TERMINAL CONDITIONS FOR AN
OPTIMUM LAUNCH TO LUNAR ORBIT
[T/Wo = 0.6; Isp 515 see; yg = 1,000 ft; V, = 100 ft/sec; Ty = 90°]
Optimum, integrated| Analytic, guided
v, ftfsec « « v . o . . . 5,772.5 5,774.6
A R I I 4k9,957.9 k9,957.4
v, ftfsec « v v v v v . 5,606.7 5,606.7
Tiodeg ..ol 0.00084 0.00341
Pyo deB . ... 5.6730 5.6805
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TABLE II.- TERMINAL STATE ERRORS FOR GUIDED DESCENT FROM LUNAR
ORBIT TO FLARE AT ALTITUDE OF 5,000 FEET = LONGITUDE FREE

Initial conditions

Final conditions

T/wo DU o JR %
Isp’ sec . e e e e . 31k
Vo ft/sec c e« .. 5,68 v, ft/sec . . . . . 100
Yo T ¢+« . . . . 50,000 P 4 4 998.4
Y F) deg e o * ® e e o 0.0 Tl’ deg . o o e . “0000177
eo’ deg e @ ® o e s & e = l .532 91, deg . o * e . -0035157
A, deg . « « « . . =83.38 Azl’ deg . . . . -87.0
(Po’ deg « e o o o @ -17 095 Ql’ deg . o . e . -28-039
Ai., deg L] L] - - - . - 2 - 8017
Correction interval, sec

Error 2.5 5.0 10.0
V. ft/sec “ e e 0.93 2.93 5.47
V, ftfsec . . . . . . 1.990 0.949 1.928
v, ft . . . . .. 0.27 0.87 4.83
Y, deg . . . . .| 0.0055 0.2126 1.2326
@, deg . ... .. .| 0.0022 0.0022 0.0022
A,deg . . ... .. 0.8809 0.3462 0.9121
@, deg - . . .« . . .| 0.0157 0.0170 0.0197
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TABLE III.- TERMINAL STATE ERRORS FOR GUIDED ASCENT TO
LUNAR ORBIT — LONGITUDE FREE

Initial conditions - Final conditions

T/WO e e e e e e .. 1.0115

Isp’ S€C 4 ¢ ¢ o o . 310

Vo ftfsec . . . .. 100 vV, ftfseec . . . . . . 5,600
Yor Tt o e e e 0.0 Yyi» Pt e v e e v oo . 50,000
Ty deg « « . « . . . 85 Yo deg o .0 ... 0.0
8y deg e e e e e e e 0.9 8y, deg . . . ... 1.4
Ao deg . . ¢ o o 80 Azl’ deg ¢ s s . o \ 81.5
QO; deg « « - . . . - -28 ¢i, deg . . . .. .. =24.668
Al, deg « . . . . . . 1l.3262

Error 5% Correction ;?gerval, sec ——
vV, ftfsec . . . .. 1.64 , 3.5k 11.56
V, ft/sec . . . . . . 3.63 31.07 7.00k
5 2 & 0.55 _ 8.h7 105.37
T, dege « « « « « . .| 0.0009 0.0506 0.0999
6, d€g « « « + . ...| 0.0006 |  0.0003 -0.0011
A, deg « « + . . . .| =-0.1013 0.4499 0.0937
P, deg + « + . . . .| 0.0003 0.0004 0.0066




20

TABLE IV.~ TERMINAL STATE ERRORS FOR GUIDED INSERTION
INTO CIRCULAR FARTH ORBIT - LONGITUDE FREE

Initial conditions

Final conditions

T/WO.........O.86207
Isp’ BEC + 4 o 4 o o s 426
Vo ftfsec . .. ... 8,100 vy, ft/sec . . .. 25,567
Yoo T8« o o v oo 445, 000 VP 635,000
Ty G€8 « ¢ o o o o . 14.3 T, deg o . ... -0.0018
8¢ deg « + « 4 o0 . . 15 8,5 deg .« « . . o . 16.502
Aoy deg o oo 80 A, deg ... 88.1932
Py 468 + o o o oo =70 | ®;, deg . . . . -55.328
Al, deg . . . . . . 1.367
Error Correction interval, sec

2.5 5.0 10.0
Vs ftfsec . . . . . .| 239.17 249.58 269.63
V, ftfsec . . . . . .. 1.89 0.98 3.20
Yy £t o o v v 0 0 0. 0.80 9.00 70.90
T, deg . . .+« . . .| 0.0052 0.0161 0.0534
B, deg . .« « « .« . . .| O.0047 0.0046 0.0045
A, deg . . ... .. .|0.0252 0.0262 0.0280
P, deg . . . . ... .| 0.0000 0.0050 0.0126
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:_'_Figure 2.~ Flat body characteristic velocity error for a launch to
lunar orbit. | Isp = 420 gec; gy = 5.32 ft/seca.
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Figure 3.- Comparison of solution obtained by using analytic and exact
solutions for launch to lunar orbit. T/Wo = 0.6; ISp = 315.0 sec.
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Figure k.- Optimum launch to lunar orbit.
T/WO = 0.6; Isp = 315 sec.
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Figure 5.- Optimum descent from lunar orbit with longitude free.
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